你好,游客 登录
背景:
阅读新闻

基于AI技术的医疗影像靠谱么?听听放射科的教授们怎么说

[日期:2017-07-26] 来源:雷锋网  作者: [字体: ]

2017年7月22日,北京大学医学部影像医学学系第二次学术年会在北京国二招酒店举行,当天上午举行了“医学影像与人工智能论坛”。

雷锋网了解到,北京大学医学部影像医学学系成立于2016年9月3日。北京大学医学部医学影像学学系是以北京大学第一医院、人民医院、第三医院、肿瘤医院放射科为主体,联合其他北京大学所属临床医学院及教学医院相关教研室共同组成。

多位医院影像科专家、科研院所和创业公司参加了此次论坛。他们如何看待这个领域的前景以及发展方向?与这个全新领域关系最为紧密的影像学者又是怎么看待这个新技术?

首先,北京大学人民医院杜湘珂教授进行了“医学影像中的人工智能技术”的主题演讲。杜教授表示,医学影像AI还处于“婴儿期”,但AI和人类相比在智能筛查方面的速度和准确性上都有很大优势,学术界和企业界已经出现了很多成果。

肺结节是早期肺癌的表现形式,在我国癌症死亡原因中,肺癌死亡率占第一位,肺癌的早期发现和治疗能极大提高病人的生活质量和存活率,对肺结节的筛查很重要。

杜教授认为,虽然AI在肺结节的检出上比人工快,但是肺结节的检出并不是那么简单,5毫米以下的小结节,尤其是1-3毫米的结节,情况更为复杂,并且肺本身的疾病分类就多达200多种,数据量非常庞大。“所以AI进入医疗影像领域应用的方向和切入点一定是在单一且规律性强的领域。”

“AI并不能完全替代医生。医生看病不止于看图这么简单,AI完成的仅仅是诊断环节中的一部分工作。同时,AI的盈利与能源消耗也是一个巨大的现实问题。IBM沃森医生与安德森癌症中心的合作已经暂停,花费了6200万美金。“杜教授表示。

随后,华中科技大学同济医学院附属同济医院的艾涛教授进行题为“深度学习与肺结节的智能识别”的演讲。

艾涛表示,CT扫描是肺结节检测的“金标准”,但是检测结节的难度也很大,在工作量巨大的情况下,大约39%的结节会被放射科的医生遗漏,同时良恶性的分类也是个很大的挑战。

他表示,深度学习算法是对人工神经网络的发展。多数算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine,RBN),Deep Belief Networks(DBN),卷积网络(Convolutional Network)。

除了学术界人士之外,大会还邀请了企业代表分享了各自公司在医学影像方面的应用。

推想科技CMO夏晨博士进行了主题为“医疗人工智能的落地与应用案例”的演讲。夏晨博士从企业的角度分享了推想在技术研发和辅助诊断方面的应用情况。

推想科技总部位于北京,是一家人工智能公司,致力于应用深度学习技术为医疗影像辅助诊断提供解决方案,推想科技推出智能X线辅助诊断产品(AI-DR)、智能CT辅助诊断产品(AI-CT),智能深度学习科研平台(AI-Scholar),已在北京协和医院,上海长征医院、武汉同济医院、大连中山医院投入试用。

随后,飞利浦医疗临床科学部郭宁以“从医学影像来看大数据在智慧医疗中的价值”为题,从“医学引影像的发展历程”、“医学成像的挑战”、“影像组学特征提取的方法”等方面发表了自己的见解。

他表示,医学影像的发展历程经历了从物理驱动到应用驱动再到数据驱动的过程。深度学习面临的挑战在于数据的质和量,“Data size is the king,Data quality is the Queen。”在演讲中,他还与听众分享了飞利浦公司在肿瘤基因组和数字化病理等方面的解决方案。

上午的最后一位演讲嘉宾是通用电器医疗战略市场经理姚婉。她发表了“肺癌早筛早诊解决方案及人工智能技术应用”的主题演讲。

她表示,中国的肺癌疾病形势严峻,近30年肺癌的死亡率上升了465%,肺癌患者中晚期发现比例达到了75%,而肺癌患者五年的生存率仅为17%,这就为肺癌疾病的早期筛查提出了要求。在演讲中,她分享了人工智能深度学习技术原理:通过建立深度学习神经元数学模型,直接从海量医疗影像的原始像素出发,让模型自己挖掘有效组学特征,学习和模仿医生的诊断技术。

演讲嘉宾的分享结束后,还就“人工智能医学影像在基层医疗有哪些应用前景”、“企业在人工智能医学影像方面的研发和体验”等话题进行了探讨。

收藏 推荐 打印 | 录入:admin | 阅读:
相关新闻      
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款