你好,游客 登录
背景:
阅读新闻

机器学习——深度学习(Deep Learning)

[日期:2016-05-03] 来源:CSDN  作者: [字体: ]

  Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。

  Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

  1. 有监督学习和无监督学习

  给定一组数据(input,target)为Z=(X,Y)。

  有监督学习:最常见的是regression & classification。

  regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。

  

 

  classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

  

,其中fi(X)=P(Y=i | X);

 

  

 

  无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

  density estimation就是密度估计,估计该数据在任意位置的分布密度

  clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。

  PCA和很多deep learning算法都属于无监督学习。

  2. 深度学习Deep Learning介绍

  Depth 概念:depth: the length of the longest path from an input to an output.

  Deep Architecture 的三个特点:深度不足会出现问题;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描述而成的feature构成,就是上篇中提到的feature hierarchy问题,而且该hierarchy是一个稀疏矩阵);认知过程逐层进行,逐步抽象

  3篇文章介绍Deep Belief Networks,作为DBN的breakthrough

  3.Deep Learning Algorithm 的核心思想:

  把learning hierarchy 看做一个network,则

  ①无监督学习用于每一层网络的pre-train;

  ②每次用无监督学习只训练一层,将其训练结果作为其higher一层的输入;

  ③用监督学习去调整所有层

  这里不负责任地理解下,举个例子在Autoencoder中,无监督学习学的是feature,有监督学习用在fine-tuning. 比如每一个neural network 学出的hidden layer就是feature,作为下一次神经网络无监督学习的input……这样一次次就学出了一个deep的网络,每一层都是上一次学习的hidden layer。再用softmax classifier去fine-tuning这个deep network的系数。

  

深度学习

 

  这三个点是Deep Learning Algorithm的精髓,我在上一篇文章中也有讲到,其中第三部分:Learning Features Hierachy & Sparse DBN就讲了如何运用Sparse DBN进行feature学习。

  4. Deep Learning 经典阅读材料:

  The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009).

  The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list of references.

  The LISA public wiki has a reading list and a bibliography.

  Geoff Hinton has readings from last year’s NIPS tutorial.

  阐述Deep learning主要思想的三篇文章:

  Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief netsNeural Computation 18:1527-1554, 2006

  Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, Greedy Layer-Wise Training of Deep Networks, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007<比较了RBM和Auto-encoder>

  Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann LeCun Efficient Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007<将稀疏自编码用于回旋结构(convolutional architecture)>

  06年后,大批deep learning文章涌现,感兴趣的可以看下大牛Yoshua Bengio的综述Learning deep architectures for {AI},不过本文很长,很长……

  5. Deep Learning工具—— Theano

  Theano是deep learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看Theano basic tutorial,然后按照Getting Started 下载相关数据并用gradient descent的方法进行学习。

  学习了Theano的基本方法后,可以练习写以下几个算法:

  有监督学习:

  Logistic Regression - using Theano for something simple

  Multilayer perceptron - introduction to layers

  Deep Convolutional Network - a simplified version of LeNet5

  无监督学习:

  Auto Encoders, Denoising Autoencoders - description of autoencoders

  Stacked Denoising Auto-Encoders - easy steps into unsupervised pre-training for deep nets

  Restricted Boltzmann Machines - single layer generative RBM model

  Deep Belief Networks - unsupervised generative pre-training of stacked RBMs followed by supervised fine-tuning

  最后呢,推荐给大家基本ML的书籍:

  Chris Bishop, “Pattern Recognition and Machine Learning”, 2007

  Simon Haykin, “Neural Networks: a Comprehensive Foundation”, 2009 (3rd edition)

  Richard O. Duda, Peter E. Hart and David G. Stork, “Pattern Classification”, 2001 (2nd edition)

收藏 推荐 打印 | 录入:admin | 阅读:
相关新闻      
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款